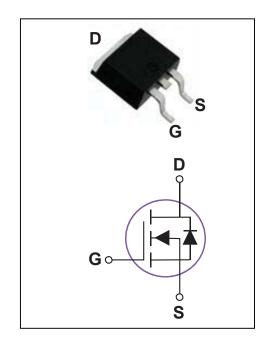


TO-252 Plastic-Encapsulate Transistors


BVDSS	RDSON	ID
100V	115mΩ	12A

Features

- 100V,12A, RDS(ON)=115mΩ@VGS=10V
- Improved dv/dt capability
- Fast switching
- 100% EAS Guaranteed
- Green Device Available

Applications

- Networking
- Load Switch
- LED applications

MAXIMUM RATING5 AND CHARACTERISTIC5

@ 250C Ambient Temperature (unless otherwise noted)

Parameter	Symbol	Rating	Units
Drain-Source Voltage	V _{DS}	100	V
Gate-Source Voltage	V _G s	±20	V
Drain Current – Continuous (T _C =25°C)	I-	12	А
Drain Current – Continuous (T _C =100°C)	l _D	7.6	А
Drain Current – Pulsed ¹	I _{DM}	48	А
Single Pulse Avalanche Energy²	EAS	6	mJ
Single Pulse Avalanche Current²	IAS	11	А
Power Dissipation (Tc=25°C)	Pp	34.7	W
Power Dissipation – Derate above 25°C	PD	0.27	W/°C
Storage Temperature Range	T _{STG}	-50 to 150	°C
Operating Junction Temperature Range	TJ	-50 to 150	°C

Thermal Characteristics

Parameter	Symbol	Тур.	Max.	Unit
Thermal Resistance Junction to ambient	ReJA		62	°C/W
Thermal Resistance Junction to Case	Rejc		3.1	°C/W

TO-252 Plastic-Encapsulate Transistors

Off Characteristics

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Drain-Source Breakdown Voltage	BV _{DSS} V _{GS} =0V , I _D =250uA		100			V
BV _{DSS} Temperature Coefficient	△BV _{DSS} /△T _J	Reference to 25°C , I _D =1mA		0.09		V/°C
Drain Source Leakage Current		V _{DS} =100V , V _{GS} =0V , T _J =25°C			1	uA
Drain-Source Leakage Current	IDSS	V _{DS} =80V , V _{GS} =0V , T _J =125°C			10	uA
Gate-Source Leakage Current	I _{GSS}	V _{GS} =±20V , V _{DS} =0V			±100	nA

On Characteristics

Static Drain-Source On-Resistance	R _{DS(ON)}	V _{GS} =10V , I _D =10A		95	115	mΩ
Static Drain-Source Off-Nesistance	NDS(ON)	V _{GS} =4.5V , I _D =8A		100	125	mΩ
Gate Threshold Voltage	$V_{GS(th)}$	V _{GS} =V _{DS} , I _D =250uA	1.2	1.6	2.2	V
V _{GS(th)} Temperature Coefficient	$\triangle V_{GS(th)}$	VGS-VDS , ID -250UA		-5		mV/°C
Forward Transconductance	gfs	V _{DS} =10V , I _D =2A		8.7		S

Dynamic and switching Characteristics

Total Gate Charge ^{3,4}	Qg		 20	40	
Gate-Source Charge ^{3,4}	Qgs	V _{DS} =50V , V _{GS} =10V , I _D =2A	 3.2	6	nC
Gate-Drain Charge ^{3,4}	Q _{gd}		 3.6	7	
Turn-On Delay Time ^{3,4}	T _{d(on)}		 18	36	
Rise Time ^{3,4}	Tr	V_{DD} =50V , V_{GS} =10V , R_{G} =3.3 Ω	 4	8	ns
Turn-Off Delay Time ^{3,4}	T _{d(off)}	I _D =1A	 40	80	115
Fall Time ^{3,4}	Tf		 3	6	
Input Capacitance	C _{iss}		 1400	2800	
Output Capacitance	Coss	V _{DS} =25V , V _{GS} =0V , F=1MHz	 60	120	pF
Reverse Transfer Capacitance	C _{rss}		 35	70	
Gate resistance	Rg	V _{GS} =0V, V _{DS} =0V, F=1MHz	 2	4	Ω

Drain-Source Diode Characteristics and Maximum Ratings

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Continuous Source Current	Is	V _G =V _D =0V , Force Current			12	Α
Pulsed Source Current	Ism	TVG-VD-UV, FOICE Current			24	Α
Diode Forward Voltage	V _{SD}	V _{GS} =0V , I _S =1A , T _J =25°C			1	V
Reverse Recovery Time ³	t _{rr}	Is=1A , dl/dt=100A/µs T _J =25°C		38		ns
Reverse Recovery Charge ³	Q _{rr}	13-17τ, απατ-100/143 13-20 0		27		nC

Note:

- 1. Repetitive Rating: Pulsed width limited by maximum junction temperature.
- $\begin{array}{ll} 2. & V_{DD}\text{=}25\text{V}, V_{GS}\text{=}10\text{V}, L\text{=}0.1\text{mH}, I_{AS}\text{=}11\text{A}., R_{G}\text{=}25\Omega, Starting T}_{J}\text{=}25^{\circ}\text{C}. \\ 3. & \text{The data tested by pulsed , pulse width } \leq 300\text{us , duty cycle} \leq 2\%. \\ \end{array}$
- 4. Essentially independent of operating temperature.

RATINGS AND CHARACTERISTIC CURVES

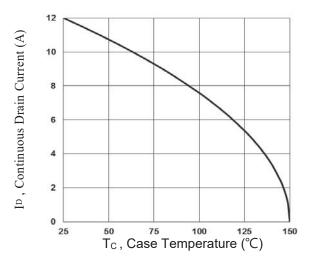


Fig.1 Continuous Drain Current vs. Tc

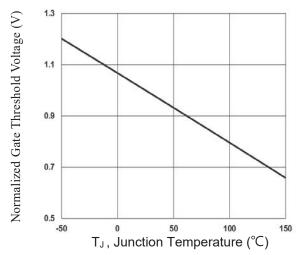


Fig.3 Normalized V_{th} vs. T_{J}

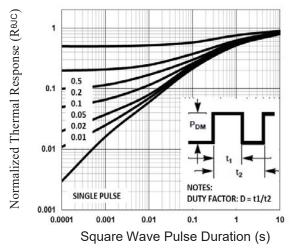


Fig.5 Normalized Transient Impedance

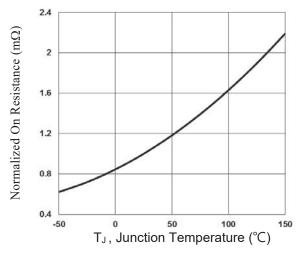


Fig.2 Normalized RDSON vs. TJ

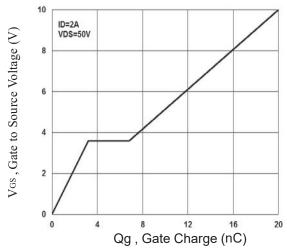


Fig.4 Gate Charge Waveform

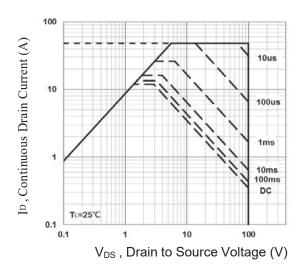
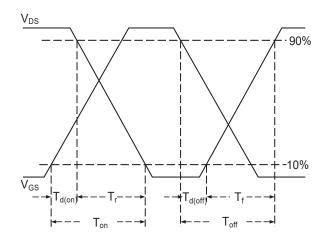
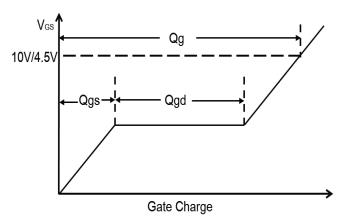
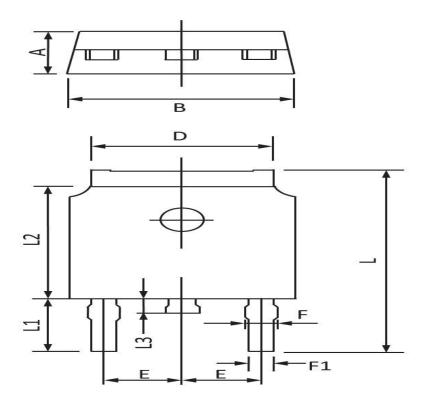



Fig.6 Maximum Safe Operation Area

RATINGS AND CHARACTERISTIC CURVES

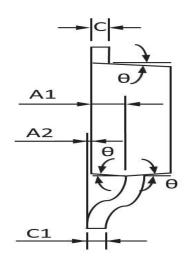

Fig.7 Switching Time Waveform

Fig.8 Gate Charge Waveform

TO-252 PACKAGE INFORMATION

Symbol	Symbol Dimensions In Millimeters		Dimension	s In Inches
	MAX	MIN	MAX	MIN
A	2.400	2.200	0.094	0.087
A1	1.110	0.910	0.044	0.036
A2	0.150	0.000	0.006	0.000
В	6.800	6.400	0.268	0.252
C	0.580	0.450	0.023	0.018
C1	0.580	0.460	0.023	0.018
D	5.500	5.100	0.217	0.201
E	2.386	2.186	0.094	0.086
\mathbf{F}	1.140	0.600	0.045	0.024
F 1	0.880	0.500	0.035	0.020
L	10.400	9.400	0.409	0.370
L1	3.000	2.400	0.118	0.094
L2	6.223	5.400	0.245	0.213
L3	1.200	0.600	0.047	0.024
θ	9°	3°	9°	3°